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It is shown that in the LCAO-MO-MC-SCF problem, if the molecular orbital orthonormatity 
constraints are introduced in the manner suggested by Kari and Sutcliffe or indeed by any similar 
method then the Hessian of the problem with respect to the linear coefficients is singular. The nature 
of this singularity is analysed and it is shown that in general it is possible to remove it in a level- 
shifting-like scheme, but that only in certain special cases is this procedure likely to be quickly 
convergent. 
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1. Introduction 

In a recent paper  [1] Sutcliffe produced  arguments  to account  for the slow 
convergence of conjugate  gradient and conjugate direction methods  (for a sur- 
vey see [3]) when used to optimise the energy with respect to linear coefficients 
in the L C A O - M O - S C F  approach.  The object of  this short  paper is to generalise 
the results obtained in the previous paper to the case of  a general energy functional 
depending on a set of orbital coefficients. The algebra involved in deriving the 
results presented below is tedious in the extreme and we shall confine ourselves 
simply to presenting the main results. 

It will be remembered  that  it is the object of most  direct minimisation methods,  
when applied to an unconstra ined function f(x), to determine a direction p from 
any chosen point  x = a such that the new point  

~=a+~p (1.1) 

has the proper ty  that, for suitably chosen ~, 

f(fi) < f ( a ) .  (1.2) 

In the limit fi should become the point  at which the function has a minimum. 
It will also be remembered  that  if the function can be expanded in a Taylor  series 
about  the min imum then for any point  a sufficiently close to the minimum, the 
direction of  descent to the min imum may be given by:  

,= (1.3) 
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where H is the matrix of second derivatives of the function evaluated at the 
minimum point (the Hessian at the minimum) and g(a) is the gradient of the func- 
tion evaluated at the point a. This formula requires, of course, that H be a positive 
definite matrix. In fact f (x )  may possess a minimum at a point even if H is only 
positive semi-definite and if this is the case, then special formulae must be devel- 
oped for p. It was shown in [13 that the Hessian at the minimum in the LCAO- 
MO-SCF closed shell and unrestricted problem was only positive semi-definite 
and some appropriate formulae were developed there for this case. It was further 
demonstrated in that paper that in such a case the quadratic convergence guar- 
antees for conjugate gradient and conjugate direction methods can no longer be 
given, so that such methods may well prove to be unsatisfactory in practice. 

2. Direct Minimisation of the Energy Functional 

In the LCAO-MO approach the molecular orbitals of a problem ~b are given 
in terms of an m orbital basis q, by the relation 

q~ = ~/(Ti T,) (2.1) 

where the matrix of coefficients T describes the n occupied and T, the m-n un- 
occupied orbitats. We shall consider q to be a 1 by m matrix and T t o b e  an m 
by n matrix with n < m. The basis q is of course arbitrary but usually one has in 
mind some fundamental basis, the fixed AO basis, in which the integrals of a 
problem are actually evaluated. We shall use the subscripts i, j etc. to denote the 
possibility of a range (1, m) and r, s, etc. to denote the range (1, n). The energy, 
E, in this approach can be regarded as a function of T, but it is not an unconstrained 
function of T since we have the accessory orthonormality requirement 

TTST = 1. (2.2) 

where S is the overlap matrix in the basis ~/and where we assume real orbitals 
and coefficients. As Fletcher [3] was the first to show these constraints may be 
removed by writing 

T= YU (2.3) 

with U chosen so that 

UU r = ( y r s y ) -  1. (2.4) 

The energy E may then be treated as a function of the unconstrained variables Y 
This is possible as long as ( y T s y )  is non-singular. 

Using the chain rule it is a straightforward matter to establish that the first 
and second derivatives of E with respect to the elements of Y are given by 

~E/~3Yir=(WUT)ir q- 2juv YjuV(r (2.5) 
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and 

+ ~,~ Us.Kj.  ,~,, U~,~ 

+ Zk, , ,  (U~,Yk, V~(1),j~Kk.,i, + U~,Yk, V~(1)i~Kj,,k,) 

(1) (1) + Z ~ , , . . w Y ~ w Y ~ Y & j Y ' ~ . , d G , , .  

where 

(2.6) 

W~ = ~E/(~T~ ; K;~,r = 32E/~Tj~c3T~r, 

Vu 1) a U u v / a Y i i r ;  V ,  (2) - - a 2 [ [  / ~ Y j s ~ Y i r  v , ir  ~ -  j s ,  uv, i r - - ~  - - u v l - -  �9 

We may imagine that we have chosen our basis !/ in such a way that 

(2.7) 

that is to say we choose our basis to be orthonormal and also to be such as to 
have as its first n members the occupied molecular orbitals. This is a basis of the 
kind that Hillier and Saunders [4] call a trial molecular orbital (TMO) basis. In 
the T M O  basis the above formulae simplify considerably and yield 

0~/~Y,,= w,r+ Z.~ w.vv.(1.~,, (2.s) 

(w,.~., j~+ ~ 2 E / e y j s t ~ Y i r : K j s , i r @  E u 1) WjuV~su , i r  

+ ~.~ (w.~ vj~).~ ~, + v? ) rc ' v5 ) K , , u v , j s - - u v , i r  ~ -  u v , i v  js ,  uvz 

~-  2 t w u v  1/(1) / (  V(1) (2.9) v v w,  ir~tXut, vw  " u t , js  " 

The problem is now to determine the elements of the matrices V (1) and V (2). 
By straightforward but rather tedious manipulation it may be shown that con- 
dition (2.4) yields in the TMO basis, the following results 

V(1). ~.,i~ - + v(1)'. .~, ,~ = - ( 6 ~ 6 ~ .  + 6 ~ . 6 ~ )  (2.10) 

and 

s , vu , i r  -~  r j s , u v , i r  

- (V(l! a. + V(l! ,~. + V,.(~}s6i, (1) 

- Z , ,  (v,(') ~ ~ , v,!2~a,~a,, v t , v , j s Vr uV i t ,  T 

(1) (1) 
-t- Vtt,u,irt~ j t ,  t S s v - ~  Vt, v, ir(~ j t , 6  su 

] 'u(1)" g(1)- -1-17(1) V(1) ] (2.11) 
�9 t 'u,  tr ' t'V,JS - -  " t ' v , i r  " t ' u , jM �9 

Clearly it is not possible to make these results completely explicit without speci- 
fying a form for U and determining its derivatives. To return to an arbitary basis 
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however, it is easy to see that we can always write 

Vv 1) - / V  (1) V. (1) ~ (2.12) u, ir--  --O)vu( vu, ir + uv,ir] , 

(2) _ (2) (2) 
Vj . . . . .  i r -  - -  ('Ovu(Vj s,vu, ir -~ Vj  s,uv, ir) (2.13) 

for suitably chosen co,,. 
Thus if U is chosen ( y r s y ) - ~  corresponding to symmetric orthogonalisation 

the consequent requirement that dU shall also be symmetric implies that coy, = �89 
for all vu. The same result can be shown to hold for the common variant of this 
method in which U is not necessarily symmetric. If U is chosen to be an upper 
triangle, corresponding to Schmidt orthogonalisation it follows then that coy. = 1, 

1. v < u, co,, = 3, coy,-0, v > u. Whatever the method adopted, however the co~, have 
the following properties 

co~. + co., = 1, co.. -- ~1. (2.14) 

These can be considered to hold even if U,v is identically zero (as it might be 
through symmetry) so that V (~) - 0  and so on. �9 uv, i r - - ~  

Using the forms for V (I) and V (2) (2.8) and (2.9) may be re-written after ex- 
tensive manipulation 

aE/a Yi~ = W~,(1 - A,) + A ,co,e(W~ - W~,) , (2.15) 

+ d ~A j~r ~ - co~jd j(1 - co~A 3K, j ,  ~ 

- c~ i(1 - coj,A j)Kj,,  ri 

+ 3 i j ( A i A j ( 1  - -  (Dsi(Dri) --  1) (W~cos, + Wrs(.Ors ) 

+ 6rs(AiAj(1 - c%coj,) (Wjicoji + Wijcoi) 
- (w,  o jdj + Wj,co. A i)) 

+  i,(Aj(1 - c%co.)  (Wjrcoj. + W jcor)- Wj.co. ) 

+ @(A i(1 - c%c%) (Wi,col, + W~ico,i)- Wilco,,) (2.16) 

where A i is 1 if i < n and 0 if i > n. 
Since at a solution point c~E/OY~, vanishes we can immediately infer from (2.15) 

that at a solution point 

W~,= VV~i i<=n (2.17) 

W~,=0 i > n .  

If we now examine the rr th column of the Hessian matrix we find after rather 
extensive manipulation that 

~2E/(~Y, isOYrr=(cosjcojs(~,j+co2sj(~rs)(Wsj-  Wjs) ,  j<=n 

= -3 , sWj . , ,  j > n  (2.18) 

with a precisely similar result for the ss th  row. From (2.18) and (2.17) it follows 
that the Hessian at the minimum contains n zero rows and columns, each zero 
row and column intersecting at (rr, rr)th element. Thus we have established quite 
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generally that any energy functional in which the orthogonality constraints are 
applied according to (2.3) and (2.4) possesses only a semi-definite Hessian with 
respect to the unconstrained variables. It is clear that the number of zero roots 
of the Hessian is at least n, and if we make the assumption that a minimum exists 
then by hypothesis the Hessian must be positive semi-definite. 

3. The Choice of a Descent Direction for a Positive Semi-Definite Hessian 

If we expand the energy about the minimum (denoted by E(0)) then we ob- 
tain, to second order. 

E(6 Y) = E(0) + �89 ~js,ir (E(2) (O))js, ir ~ rjs ~ riir (3. l) 
where E(2)(0) denotes the Hessian at the minimum. We can also invent the func- 
tion/~(6 Y) by the definition 

E(b Y) = E(O) + �89 ~j~,,r (2,r6j~,,r + E(2)(O)j~, i,)5 Y/,3 Yjs (3.2) 

where the 2it are arbitrary positive constants, and where obviously 

/~(0) = E(0). (3.3) 

Thus the two functions have the same minimum and to minimise one is to 
minimise the other. Now we are at liberty to choose the 2i, in such a way as to 
make the Hessian of (3.2) positive definite, and hence a direction of descent is 
now certainly given by 

p = - (~, + E ~2) (0))-1 g.  (3.4) 

Clearly this is a simple extension of the Goldfeld-Quandt-Trotter [-5] method, 
and reduces to this method when/ ,  is chosen as a multiple of the unit matrix. 
If we choose ~, in such a way as to make the now non-singular Hessian heavily 
diagonal dominant so that we can expand the inverse about the diagonal and 
write to any desired accuracy 

p =  - e - 1 o  (3.5) 

where e is a diagonal matrix with elements 
% = 2ir + (E (2) (0))i,, i~. (3.6) 

It follows at once therefore that p can be written as a rectangular matrix P with 
elements 

P~, = - E ~1) (c5 Y)ir/% (3.7) 

where E (1)(6 Y) is the matrix of first derivatives, given generally by (2.5), evaluated 
at the point 0 + 3 Y. 

It should be noticed that it is not at once clear that we may use the simplified 
formulae (2.15) and (2.16) in (3.7). If we choose the exact solution basis together 
with some appropriate orthogonal extension as our TMO basis then we can 
certainly use (2.16) for E(2)(0). However, since, by hypothesis the current point is 
not a point at which, in this basis, S, T, Y, and U can be expressed in the form 
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(2.7), then (2.15) cannot consistently be used for E(1)(6Y). Mutatis mutandi if we 
use the current basis as the TMO basis, we may use (2.15) but not (2.16). 

In practice of course we shall be restricted to using the current basis as the 
TMO basis, and we shall evaluate both E (1) and E (z) at the current point, relying 
on the constancy of the Hessian in the quadratic region, to justify this procedure 
eventually. On this basis then, using both (2.15) and (2.16), the matrix P has 
elements 

Pit = Wir/(Wr~- Kir, ir-  2i~ ) i > n 

= 0  i=r  

=c%(W/~- W~i)/(cozi(W~+ W~i+2Kir,r i-Kir , i -K~i,~i)-2i~ ) i < n .  (3.8) 

The up-dated Y matrix is then 

Y ~  f ' =  Y+c~P (3.9) 

where c~ is chosen to minimise E(Y). 
The overlap matrix specified by f" is 

f ' r  ~ = I ,  + ~(Pt + Prt ) + c~2 pT p (3.10) 

and the overlap matrix between the new vectors and the currently unoccupied 
vectors is eP~. Here Pt and Pb represent the first n and the last m-n rows of P 
respectively. Thus this new Y does not at once specify the occupied portion of 
a new TMO basis. A new matrix U must therefore be chosen according to (2.3) 
and (2.4), with the proviso that the orthogonalising process used in constructing 
U is compatible with the choice of c% in (3.8). Furthermore Eqs. (2.5) and (2.6) 
must be used in any future up-dating using (3.8). This makes the method ex- 
tremely cumbersome to use in practice. 

An alternative approach would be to construct a new matrix T according to 
(2.3) and (2.4), to orthogonalise the presently unoccupied basis to this T and then 
to treat the resulting complete matrix as specifying a new TMO basis. In this 
new basis of course it is possible to use (2.15) and (2.16) in evaluating (3.8), but it 
has the disadvantage that an effectively new problem is posed at each descent 
and thus it is impossible to give any kind of finite convergence guarantees. 
However one might consider this an appropriate strategy when (Pt + pr)  vanished, 
in which case the constraints would be up-dated only to second order, and this 
one might expect the effect on Y of orthonormalisation to be rather small. 

In fact it has been shown in [lJ that in the case of a simple closed shell or 
unrestricted LCAO-MO-SCF procedure Pt itself vanishes, so that this approach 
should be effective there 1. In fact in this case our equations (3.8) become simple 
generalisations of the Hillier and Saunders level shifting method [4] with 2it 
equivalent to their level shifting parameter and e equivalent to to their damping 
factor (for an open shell generalisation of this see Guest and Saunders [6]). Level 
shifting methods are known to be extremely effective in these cases. 

P, vanishes in this case because one is free to choose W~ r = W~. There is a misprint in Eq. (5.8) 
of [1] the matrix printed Q should be printed 0, the n by n null matrix. 
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In general, however, we can see that if e),i= c% and we choose 2i~= 2,z, then 
Pt becomes a skew-symmetric matrix, and the first order terms vanish from (3.10) 
automatically. Thus we are free to make the first order terms vanish if we adopt 
a symmetric orthogonalisation procedure in constructing U, but not if we adopt 
a Schmidt procedure. In the Schmidt procedure P, is a lower triangle with a zero 
diagonal; so that to first order Y is a lower triangle with a unit diagonal. 

Apart from these general considerations and the requirement that the inverse 
on the right of (3.4) exists there appears to be nothing that can easily be said about 
the choice of L If we choose 2 to be a large constant multiple of the unit matrix 
then the Eqs. (3.8) become effectively the steepest descent equations. Since an 
ordinary steepest descent procedure is known in general, to have a very poor 
rate of final convergence, we would avoid such a choice of the 2~. On the whole 
it would anyway be good tactics to choose the 2z~ as small as possible, at least 
in the quadratic region of the energy. To see this we notice that it is easy to show 
that if we choose e by minimising /2 (which is a quadratic function) along P 
chosen by (3.4), then e will always be unity. This is a general result for quadratic 
functions (see [1]) in so far as Eqs. (3.8) are good approximations to (3.4) this 
result will hold if we choose our direction according to (3.8). In practice we shall 
find c~ by minimising E, and the same result will hold under the same conditions, 
in the quadratic region, only if the 2~ are zero. Thus if we can keep the 2~r small 
while (3.8) remains a good approximation to the inverse Hessian, we can be con- 
fident that e will be approximately unity and thus we can avoid the need for a 
time-consuming linear search to minimise E along P. 

In fact if there are n and only n zero roots it should be sufficient to ensure the 
positive definiteness of the right-hand side of (3.4), to choose 2~r=~2 where 2 is 
a positive constant. If this is possible and (3.5) remains a good approximation 
then c~ will be as close as is possible to 1. In practice however it may be preferable 
to choose 2i~=2 for i > n  and 2 for i<n ,  choosing Z large at the beginning of the 
solution process to minimise occupied orbital mixing. 

4. The Realisation of the Method in the L C A O - M C - S C F  Case 

If we write the energy (in atomic units) for the conventional fixed nucleus 
problem in the LCAO-MC-SCF case as (see [7], p. 142, see also [-8]). 

(4.1) 

where 

hij = ( rllhLrl ))  , gijkl = ( rhrl j[ 1/r l elrlgrle) (4.2) 

with p(1) and p(2) denoting the one and two particle density matrices in the MO 
basis. 

It is then a straightforward matter to show (assuming real orbitals and coef- 
ficients) that 

W = 2(hTp~I)+ Z) (4.3) 
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with 

Zir  = Zstukjl  * 2) Tjs g i jkl Tkt TluI~t . . . .  (4 .4)  

and that 

(1) 2) 2) (2) K js,,,. = 2(hijPsr + ~,,, (gi.it,,( Pt . . . .  +Ptt . . . .  ) + 9iq,,P~,,,,.t) (4.5) 

where 9ijt,, denotes the integral 

(l~il~j] l/r12 ] qSt~b,> �9 (4.6) 

It is again an easy matter to show that at a minimum, subject to constraints, 

( h T P  ~1) + Z)  = STe  (4.7) 

where ~ is an n by n symmetric matrix of Lagrange Multipliers. 
If we consider for a moment the simple closed shell problem then it is the 

case that 

Z = 2 G T  (4.8) 

where G is the usual electron interaction matrix 2 J - K ,  and that therefore 

W = 4 f T  (4.9) 

where f i s  the usual Fock matrix h +G. 
In this case we know that in any real basis, f is symmetric and we further 

know that we can always find a basis (the basis of canonical MO's) in which, at 
any stage, f can be expressed as 

/ ~ --T 

f =  ( ,..%...i-.f..., t (4.10) 
\ f  ieu / 

where ~o and ~, are diagonal matrices of the occupied and unoccupied orbital 
energies respectively. This basis is also of course a T M O basis as defined in (2.7) 
so that (4.9) simplifies to 

(3) 
It follows from (4.8) and (4.5) that in any orthogonal basis we may write 

K j~,i,. = 4 f ~6,.~ + 169ii,.~ - 49ij~r- 49i~j~ . (4.12) 

In the TMO basis in this case it follows from (2.15) and (2.16) that 

El2=0 i__<n 
=4f~, i > n  (4.13) 

Ej(2)--0 i or j < n  s, ir - -  

=4(~ij(~rs(Si--Sr)"t'- 16gij,.s--4gij~,.--49isi,. i and j > n .  (4.14) 

If one had a sufficiently good TMO basis so that the occupied and unoccupied 
orbitals were stable then one would usually expect ej to be positive, as it is drawn 
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from ~u and e, to be negative since it is drawn from s0. In consequence one would 
expect the first term of the non-zero part of (4.14) to be positive and much larger 
than the subsequent terms. The Hessian would in this case be strongly diagonal 
dominant. In any case 8~< % by hypothesis, so that the leading term must at 
least be positive. For the two electron part the diagonal term is positive unless 
(irl 1/r 121 ir) > 4(ill 1/r 12 [ rr), and one might well anticipate that the two electron 
terms on the diagonal would in themselves, be greater than their off-diagonal 
counterparts. Thus it is perhaps not too much to say that the choice of a canonical 
basis forces the non-zero part of the Hessian to be naturally diagonal-dominant 
with the consequent possibility that the 2~ here may be chosen as small as is 
convenient. Furthermore this choice keeps, to first order, the orthonormality 
properties of the updated matrix. Last, but by no means least, we see that the 
factorization (4.8) of Z, which makes an eigen-value problem possible, also 
implies that at least a portion (and hopefully the most significant portion) of the 
two-electron part of the second derivative matrix can be written in terms of the 
two-electron parts of the gradient matrix. This means that we need little extra work 
to construct the denominators in (3.8). We can therefore think of the properties 
of the canonical MO's in this case as the paradigm for any TMO's to be used 
in a level-shifting method for solving the general MC-SCF problem. 

It is clear that one can always go some way to achieving this paradigm situa- 
tion in the general MC-SCF case when, through some particular choice of the 
forms of the matrices P~ and P2, one can express (4.7) in the form of an eigen- 
value equation or as a set of coupled eigen-value equations, since in this way 
a set of orbitals with quasi-canonical properties can be achieved. Thus one can 
derive formulas from the formulas (4.3), (4.5), and (3.8) given here, which are slight 
generalisations of Guest and Saunders' [6] level-shifting method for the usual 
open-shell SCF problem, and of Wood and Veillard's [-9] formulas for level- 
shifting in the Clementi-Veillard MC-SCF problem. An analysis similar to that 
given for the chosen shell problem above makes it plausible that level-shifting 
methods should work very well in both these kinds of problem. 

In the general case however nothing so helpful can be said. If one wishes to 
use a level-shifting method, then clearly one should start from a TMO basis in 
which (W~,- W~i ) is close to zero for i<n and in any updating, symmetrically 
orthogonalise the occupied orbitals. This prescription is of course equivalent to 
saying that a TMO basis should be chosen in which the occupied TMO's do not 
mix very strongly, and it is well known that this is difficult to achieve in practice, 
as an initial guess. Furthermore there is, in this case, no simple relationship 
between the matrices K and W so that to apply (3.8) a significant proportion of 
the matrix K must be constructed at each iteration. 

It thus seems that in the most general case, even a level shifting method may 
well be only slowly convergent. Furthermore, if we balance the time taken to 
compute the elements of K against the number of extra iterations that would 
have to be performed in a steepest-descents procedure, it is not at all clear that 
a steepest descents procedure in the TMO basis might not be just as economical, 
particularly in the early stages of the minimising procedure. Of course one could 
not be sure of this without detailed and extensive numerical trials. 



102 B.T. Sutcliffe 

5. Summary 

As was stated in the introduction to this paper, if in a minimisation problem, 
the Hessian is not positive definite, then quadratic convergence guarantees cannot 
be given for direct minimisation methods. In particular they cannot be given for 
the conjugate gradient method. This means that the convergence of direct methods 
in this context must be regarded as uncertain. The convergence is not bound to 
be bad, but it may well be, since it cannot be proved to be good. 

We have shown here that in general the Hessian for the MC-SCF problem 
is singular and that in consequence we may expect trouble if a direct minimisation 
scheme is used to minimise the energy. We have shown that a variant of the 
Goldfeld-Quandt-Trotter scheme is a possible way out of this difficulty, but it 
does not seem likely that it will be a panacea. Numerical investigations on this 
topic are currently being undertaken. 
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